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A stereoselective and scalable route to 1,5-anhydrohexitol nucleoside analogues belonging to L-series as
building blocks for .-HNA oligonucleotide synthesis has been efficiently tuned. Key to the successful out-
come of our approach is the development of a DDQ-mediated domino reaction, which leads to the forma-
tion of an unsaturated 1,6-anhydrosugar derivative. Sugar elaborations and base insertion then enable to
synthesize six-membered nucleosides.

© 2008 Elsevier Ltd. All rights reserved.

During the last decade considerable efforts have been devoted
to the development of sugar-modified oligonucleotide analogues,
such as those containing a six-membered sugar backbone, to be
employed as a source of information for a deeper understanding
of the DNA and RNA pairing behaviour.! Expansion of the sugar
ring size of nucleic acids has increased the structural diversity be-
yond the classical A- and B-forms of DNA duplexes, introducing a
great number of new structures capable of selective cross-commu-
nication in parallel or antiparallel orientation.? Due to an improved
hybridization aptitude and a remarkable enzymatic stability, sev-
eral examples of six-membered oligonucleotide analogues have
been found to be good candidates for antisense purposes, as ob-
served for Hexitol Nucleic Acids® (p-HNA, Fig. 1). In addition, they
have been considered in the aptamer field,* in investigating life’s
origin,! as well as in biotechnology and diagnostics.’

In this context, the opportunity to modify the sugar backbone
for creating oligonucleotide architectures belonging to L-series is
a relatively unexplored area. Indeed, nucleic acids with L-configu-
ration are unknown in nature, but exhibited extraordinary resis-
tance to biological degradation.® For this reason, investigations
on r-oligonucleotides (the so called Spiegelmers, from the German
‘spiegel’, for mirror) have been convincingly carried out in recent
times for different purposes.” Some of them effectively displayed
unprecedented strong antiparallel hybridisation with both DNA
and RNA complements.® Likewise, research in the aptamer field
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Figure 1. p-/.-HNA and 1-DNA as sugar-modified nucleic acids.

has led to the construction of several oligonucleotide spiegelmers,
which were successfully used as highly specific binders.?

Inspired by such combined findings, we are engaging in a study
based on the synthesis of L-pyranosyl oligonucleotide analogues
and their hybridization with complementary nucleic acids. In this
preliminary Letter, attention has been focused on the study of
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Scheme 1. Retrosynthetic path.

L-hexitol-based (L-HNA) oligonucleotide systems (Fig. 1). More spe-
cifically, synthesis of 1-hexitol nucleoside monomers 1 and 2 (Fig.
2) as building blocks for the construction of L.-HNA structures is
proposed herein, by exploiting a recently reported procedure,'®!!
already devoted to the synthesis of rare sugars.

As depicted in Scheme 1, compound 4 represented the key
intermediate of the whole synthetic strategy. Indeed, it presents
a 1,6-anhydrosugar skeleton, which can be easily cleaved under
reductive conditions to give the required 1-deoxy sugar moiety.
Our strategy therefore includes the following steps: (a) preparation
of the 1,6-anhydro-L-sugar derivative 4 by a domino reaction from
intermediate 5; (b) reductive 1,6-anhydrosugar ring-opening of 4;
(c) creation of a C-2 electrophilic site (such as in 3) and base inser-
tion to afford anhydrohexitol nucleosides 1 and 2. To test the
breadth of our methodology, the study of nucleosides containing
thymine (T) and adenine (A) (as pyrimidine and purine base mod-
els, respectively) has been preliminarily undertaken.

The synthesis began with the preparation of the 1,6-anhydro
derivative 7 by a domino reaction,'! treating acetate 5'2 with
DDQ in a 18:1 CH,Cly/H,0 emulsion (Scheme 2). Formally, by this
procedure the following reactions took place: MPM group removal,
oxidation of the resulting primary hydroxyl function to aldehyde,
isopropylidene group removal and acetalation of the aldehyde
function by an intramolecular double cyclization. Then, dithioeth-
ylene bridge removal on 6 by means of Ra-Ni in acetone at room
temperature afforded the olefin 4 (70% yield). Driven by the need
to obtain a 1,5-anhydrohexitol backbone, the 2,3-didehydro-2,3-
dideoxy-B-1-1,6-anhydrohexose 4 was treated with triethylsilane
in acidic medium,'>'* to give the pseudo-glucal 7.

Once 1,6-anhydro ring cleavage was achieved, our attention
was turned to the construction of an electrophilic site on C-2 posi-
tion by creating an allo-epoxide function, suitable for the insertion
of an axially-oriented nucleobase moiety. Thus, 7 was deacetylated
under Zemplén conditions (Scheme 2). Treatment of the resulting
allylic alcohol with mCPBA provided epoxide 3 in good yield (89%
from olefin 7). Finally, isopropylidene protection of 3 under mild
conditions!” afforded key intermediate 8 in 80% yield.

With the protected epoxide 8 in our hand, base insertion was
next explored. The easiest way for gaining access to hexitol nucleo-
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Figure 2. Anhydrohexitol nucleoside analogues 1 and 2 as starting material for
L-HNA synthesis.
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Scheme 2. Synthesis of the protected syn-epoxide 8.

sides was by oxirane ring-opening, under alkaline conditions, using
unprotected nucleobases that arranged into the required C-2 axial
position. As already studied for similar substrates,'® the mildest
conditions for nucleobase attack consisted in the use of 1,8-diaza-
bicylo[5.4.0Jundec-7-ene (DBU).!” Indeed, treatment of 8 with thy-
mine and DBU in DMF at 90 °C for 8 h afforded protected r-altritol
nucleoside'® 9 in 89% yield (Scheme 3). Analogously, reaction of 8
with adenine under the same conditions gave 10 in a few lower
yields (74%).

Hence, 3-OH group removal was examined by testing several
deoxygenation procedures (Table 1) involving hydroxyl group
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Scheme 3. Synthesis of 1,5-anhydro-2-(thymin-1-yl)-2,3-dideoxy-L-arabino-hexi-
tol (1) and 1,5-anhydro-2-(adenin-9-yl)-2,3-dideoxy-L-arabino-hexitol (2).
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Table 1
3-OH activation of compounds 9-10
Entry Base R Conditions Time (h) Yield (%)
1 T PhO PhOC(S)Cl/Py 48 N.R.
2 T PhO PhOC(S)CI/ 48 N.R.
DMAP/CH;3CN
3 T PhO PhOC(S)Cl/ DMAP/Py 48 15
4 T MeS NaH/CS,/Mel/DMF 0.5 >952
5 T CN(CH,),S  NaOH(aq)/CS,/ 2 82
BrCH,CH,CN/DMSO
6 A CN(CH,),S  NaOH(aq)/CS,/ 0.5 <10
BrCH,CH,CN/DMSO
7 A Im (Im),CS/toluene 48 N.R.
8 A PhO PhOC(S)Cl/DMAP/Py 48 18
9 A MeS NaH/CS,/Mel/DMF 0.5 21
10 A CH5CH,S NaOH(aq)/CS,/ 0.5 93
BrCH,CH3/DMF

¢ Compound 11 was isolated as the only product.

activation (as xanthate or thiocarbonate) and its removal under
radical conditions (BusSnH/AIBN). Alcohol 9, which was treated
with phenoxythiocarbonyl chloride (PhOC(S)CI) under various con-
ditions'® did not show almost any reactivity (Table 1, entries 1-3).
Conversely, classical xanthate formation by Barton-McCombie
method?® (entry 4) afforded, in almost quantitative yield, the
undesired derivative 11 (Scheme 3), which careful structure
analysis clarified that an extra-methylation on the nucleobase
occurred. Looking for an alternative procedure, the combination
NaOH(aq), CS,, BrCH,CH,CN?' in DMSO (entry 5) furnished the
nucleoside 12 in a satisfying 82% yield. On the other hand, as far
as it concerns the adenine nucleoside 10 (Scheme 3), the latter pro-
cedure did not give analogous results, the product being obtained
in low yields®? (entry 6). Likewise, previously reported procedures
(entries 7-9) failed. Eventually, good results were obtained by
replacing the alkylating agent with the less electrophilic bromo-
ethane. In fact, treatment of 10 with the NaOH(aq)/CS,/BrCH,CHs;/
DMF mixture at 0°C (entry 10) gave, already after 30 min, the
desired product 13 in 93% yield.

Radical deoxygenation and acetonide deprotection reactions
were finally accomplished. Protected r-altritol xanthates 12
(R=SCH;,CH,CN) and 13 (R = SCH,CH3) underwent radical deoxy-
genation by means of BusSnH in refluxing toluene, using AIBN as
radical initiator. In both cases, reduction promptly occurred, with
products 14 and 15 being obtained in excellent yields (98% and
91%, respectively). Hence, exposure of 14 and 15 to 80% aqueous
acetic acid at 60 °C for 4 h afforded, after common purification
procedures, the pure 1,5-anhydro-2-(thymin-1-yl)-2,3-dideoxy-L-
arabino-hexitol*> (1) and 1,5-anhydro-2-(adenin-9-yl)-2,3-dide-
oxy-L-arabino-hexitol** (2) in quantitative yields (Scheme 3).

In summary, a stereoselective procedure for the synthesis of
1-hexitol thymine and adenine nucleoside analogues 1 and 2 via
1,6-anhydro-B-L.-hexopyranose 4 has been conveniently reported.
Further experiments aimed to incorporate nucleosides 1 and 2 in
oligonucleotide strands (i.e. .--HNA), for determining their hybrid-
ization aptitude with natural DNA sequences are currently ongoing
and will be published in due course.
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